第295章 吃饱了(1 / 2)

离语 semaphore 1618 字 14天前

1.3.2 研究方法</p>

本文以有关电力行业 LCA 的近十年的英文文献为研究对象,并根据每篇文章的元数据构建数据</p>

库。进行文档分割,将文件分割为更小的部分或章节,分区后使其更容易分类和提取文本,将文档</p>

元素列表存储并跟踪从文档中提取的各种元数据,将文本元素分割为适合模型注意力窗口的大小,</p>

构建向量数据库,方便大模型调用。利用 RAG(检索增强生成)模型,帮助大语言模型知晓具有电</p>

力 LCA 领域专业性和时效性的知识,包括最新的新闻、公式、数据等内容,增强大模型回答关于电</p>

力行业 LCA 领域专业性问题与时效性问题的能力,主要用到的研究方法如下。</p>

(1)文献资料法。通过阅读大量国内外研究检索增强生成的文章,确定将 RAG 技术作为提升</p>

大语言模型回答电力行业 LCA 领域问题专业性与时效性问题的解决方法。文献调研显示,聚焦于此</p>

领域的大模型是一个研究空白,将电力行业 LCA 的大模型应用于企业层面的分析,能够响应了重大</p>

战略。该方法能够提升科研眼界、开阔研究思路、丰富研究角度。</p>

(2)实验法。本文使用爬虫程序抓取各顶级期刊官网上近十年的文章,并通过元数据处理方</p>

法,构建文章元数据的数据库。</p>

(3)实证分析法。本文通过大量实际数据,来验证大模型调用电力行业 LCA 领域向量数据库</p>

回答该领域专业性问题和时效性问题的有效性。</p>

1.3.3 系统设计</p>

系统设计三个模块,整体设计如图 1.4 所示,分别是数据处理模块、专业领域知识库构建模块</p>

以及 Chatbot 构建模块。数据处理模块主要包括对电力 LCA 这个特定领域的英文文献进行选择和初</p>

步处理,而后将有关数据全部转化成结构化数据。知识库构建模块主要是将数据向量化并构建向量</p>

知识库。Chatbot 构建分为功能部分和前端部分,功能包括 OpenAI 基座的调用、知识库检索、在</p>

线检索;前端部分为 web 可视化以及 UI 设计。</p>

1.4 本章小结</p>

第一章作为本论文的引言部分,主要围绕研究背景、研究目的与意义、研究内容与方法以及系</p>

统设计进行了全面的阐述。首先,本章通过详细阐述当前大模型技术在内容解析领域的背景,指出</p>

了电力行业生命周期评价的重要性,并强调了研究流程和研究方法。在这一基础上,本章进一步明</p>

确了项目系统功能设计。综上所述,本章作为论文的引言部分,为整个研究提供了清晰的研究背</p>

景、目的、意义、内容及方法概述,为后续章节的展开奠定了坚实的基础。</p>

2.1 大语言模型</p>

ChatGPT 是由 OpenAI 发布的一种大语言模型,能够以问答的形式完成各类任务,包括接受文</p>

字输入,理解自然语言,理解响应并模拟人类对话形式进行输出。再各个自然语言处理子任务具有</p>

优异的表现。相比其他大语言模型拥有更丰富的知识,涵盖自然、社会科学、人文历史等多个领</p>

域。ChatGPT 在 GPT3.5 的基础上引入了 RLHF(reinforcement learning from human feedback)</p>

技术,通过将人类的日常对话的语言习惯嵌入模型,并引入价值偏好,使得模型的输出满足人类的</p>

意图。微调过程分为预训练、监督微调、设计奖励模型和反馈优化。桑基韬等人根据 ChatGPT 的对</p>