第九十六章 四色猜想(2 / 2)

“四色猜想?”沈知文立马反应过来。“艹,汪潮他怎么想的。这机器不宕机就怪了。”

“估计他自己也没反应过来,认为逻辑自洽就行了。这不宕机就怪了。计算量太大,可能需要超算才能完成。”吴哲笑着说道。

“而且他不光搞了一个四色问题的世界性难题,涉及图论那块他还搞了个西塔潘猜想出来。我都不知道说他是天才还是蠢材了。两个没证明的猜想能拿来运用,而且逻辑还是自洽的。回来我要逼着他给证明了。”汪潮恨恨说道。

“这没证明怎么就不能用了,+=还没证明呢?不照样用。再说四色问题不是已经在计算机上面证明了吗?”黄明海在旁边说道。

“那只是把四色问题算到了亿次没出错而已,一天没在数学逻辑上给出证明就还没完。”说完吴哲倒是来了兴趣,拿起笔和草稿纸开始证明起来。

——————

年,毕业于伦敦大学的格斯里,来到一家科研单位搞地图着色工作时,发现每幅地图都可以只用四种颜色着色。他就想着这个现象能不能从数学上加以证明呢?只能说是吃得太饱闲的,格斯里和他的弟弟还真就研究上了,最后还拉上了他弟弟的老师、著名数学家德·摩尔根,可到死几人也没研究出来。

直到年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题,世界上许多一流的数学家都纷纷参加了四色猜想的大会战。年的时候,数学家利用归谬法来证明大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。

&bsp&bsp年费兰克林证明了每个有至多个国家的地图都可以用四种颜色着色。年雷诺德将这一结果推广到个国家,然后在年费兰克林又创造了个国家的纪录。&bsp&bsp年温恩证明了个国家的情形以后,这方面的研究有所停滞,直到年,奥尔和史坦普尔对所有至多包含个国家的地图证明了四色定理。在哈肯和阿佩尔最终证明四色定理而使所有这类结果都黯然失色以前,这个数字曾经达到了。

年德国数学家希许就曾估计,证明四色猜想大概要涉及一万个不同构形。虽然后来证明他的估计是过分夸大了,但它却正确地指明了,四色问题也许只有借助于能处理巨量数据的强有力的计算装置才能获得解决。

年哈肯与阿佩尔联手,经过整整四年的紧张工作,终于在年月他们用三台计算机花费了个计算机小时,处理了两千多个构形,才算验证了四色问题成立。可对于数学家来说肯定是不满意的。

——————

吴哲先从着色判定问题入手设已知一个图g和&apapgt种颜色,在只准使用这种颜色对g的结点着色的情况下,是否能使图中任何相邻的两个结点都具有不同的颜色呢?

再从-着色最优化问题则求可对图g着色的最小整数。这个整数称为图g的色数。这是求图的最少着色问题,来求出的值。

for(i&bsp&bsp=&bsp&bsp&bsp&bspi&apaplt=&bsp&bsp&bsp&bspi++)

{

if(dfs(,&bsp&bspi))

{

ut&bsp&bsp&apaplt&apaplt“the&bsp&bsp&bsp&bsplors&bsp&bsp“&apaplt&apaplt&bsp&bspi&bsp&bsp&apaplt&apaplt&bsp&bspedl

break

}

}

------